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Abstract:

To analyze welfare economics with status quo bias, we identify each agent with the
incomplete preference relation defined by the preference judgments that hold at all of
the agent’s status quo points.  Although the welfare theorems of general equilibrium
theory continue to hold, the set of Pareto optima can be very large.  For generic
economies, almost every Pareto optimum sits amid an open set of Pareto optima, and
the remaining measure-zero set of optima are on the boundary of this set.  Thus, a
small distortion would call for no policy response from a policymaker aiming for
Pareto optimality.  But these problems are specific to Pareto optimality as a welfare
criterion.  When a utilitarian planner faces agents with incomplete preferences, there
will be a unique or at worst a low-dimensional set of optima.  Moreover the utilitarian
case for redistribution from low-marginal-utility agents to high-marginal-utility agents
can be recast to cover agents with incomplete preferences.  We also give several
topological and measure-theoretic tests for whether or not an agent’s preferences are
substantially incomplete, and then show that if agents display status quo bias they pass
all but one of these tests.
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1.  Introduction

Traditional models of status quo bias or the endowment effect, e.g., Tversky and

Kahneman (1991), posit a separate preference relation for each bundle of goods an agent might

be endowed with.  Unfortunately most of these preference judgments are unobservable.  If an

agent endowed with bundle a has the preferences ša, we can determine how ša ranks a vis-à-

vis an alternative bundle by seeing if the agent when endowed with a agrees to switch to the

alternative, but we will not be able to see how ša ranks among all the non-a alternatives.  If

when endowed with a the agent agrees to switch to either b or c we will not know whether ša

ranks b above c or vice versa, and similarly when the agent refuses to switch to either b or c. 

With such limited access to preferences, welfare analysis would be severely handicapped.  We

could of course fill in the missing preference ranking for b versus c by moving the agent’s

endowment to b or c and seeing if the agent agrees to switch to the other bundle.  But with

status quo bias the agent might well stick to b when endowed with b and stick to c when

endowed with c.  If we cannot judge a single individual’s well-being consistently, a fortiori we

cannot judge society’s welfare.

Our attack on this problem is to extract the preference judgments that each agent makes

unambiguously, that hold regardless of the agent’s endowment point.  If an agent endowed with

a gives up a in favor of b, let us label this behavior as b š a.  By considering each endowment

in turn and taking the union of all the binary preferences observed, we can unify the preference

judgments the agent makes at different endowment points.  This single preference relation can

then serve as the data for welfare analysis.  If the agent displays status quo bias, this ordering

will not be complete: an agent endowed with a might not select b, and when endowed with b

might not select a.  The welfare economics of status quo bias thus ends up as the welfare

economics of incomplete preferences.  In the interpretation we give to š, an agent indifferent

between a and b will exchange one bundle for the other, but we could instead suppose that an

agent will give up the status quo only for a strictly preferred bundle; we would then take strict
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rather than weak preference as primitive (see section 2).

When status quo bias is systematic, preferences will exhibit considerable

incompleteness.  ‘Systematic’ will mean that a willingness-to-accept/willingness-to-display

(WTA/WTP) disparity obtains in any direction of movement away from an agent’s reference

consumption bundle a: the boundary of the set of bundles preferred to a displays a kink at a no

matter what direction in the commodity space we move.  Mathematically this means that each

agent’s ‘normal cone’ – the set of directions perpendicular to the budget planes that support

agents’ sets of preferred bundles – has maximal dimension.  We will show that this form of

status quo bias implies that a full-dimensional set of bundles will be unranked relative to a (that

is, no preference between a and these bundles obtains).

The preferences that arise from status quo bias can satisfy all of the other classical

assumptions of economic analysis besides completeness.  They can be transitive, allowing

welfare inferences to be internally consistent.  And they can be locally nonsatiated, continuous,

and convex, thus allowing the two welfare theorems to apply: any competitive equilibrium is

Pareto optimal and any Pareto optimum is a competitive equilibrium for an appropriate set of

transfers.  But these results do not tell us how discriminating Pareto optimality is as a welfare

criterion.  We will see that if agents exhibit the systematic status quo bias, then for generic

models almost every optimum lies amid an open set (hence a set of maximal dimension) of

Pareto optima.  There can be boundary Pareto optima but they form a measure zero set and sit

on the edge of the fully indeterminate optima.  At the typical optima, therefore, a severe policy

paralysis sets in.  For example, suppose an economy’s initial allocation is one of the typical

optima and the model is perturbed slightly, say by the addition of a small tax on net trades (with

revenue redistributed to agents).  Then the initial allocation remains optimal: even a

paradigmatic tax distortion calls for no policy response.

We begin by assuming that agents experience status quo bias (a WTA-WTP disparity)

along any direction of movement from any given reference bundle a, which implies that each
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agent judges a full-dimensional subset of bundles to be unranked relative to a.  But we could

instead suppose that status quo bias and hence incompleteness applies to some subset of the

economy’s goods.  We then show that the set of Pareto optimal allocations of these goods then

has maximal dimension.

But the news is not all bad.  While status quo bias undercuts the discriminating power

of Pareto optimality, other welfare criteria can still identify a small set of optimal allocations. 

Specifically we show that a utilitarian planner facing agents with incomplete preferences will

either select a unique optimum or at worst choose from a low-dimensional set of optima. 

While a classical utilitarian planner facing complete preferences can do better and always

declare a unique optimum, utilitarianism with incomplete preferences at least does not lead to

the extreme dimensional expansion entailed by Pareto optimality.  Utilitarianism thus “cures”

the paralysis  that occurs with Pareto efficiency.  The basic cardinality building blocks that a

utilitarian planner uses to compare utility across agents are no more demanding a construction

than they are with complete preferences.  Incompleteness moreover does not undercut the core

utilitarian prescription that goods should be redistributed from low to high marginal utility

agents.  But with incomplete preferences this formula applies good by good: the planner makes

a separate evaluation for each good k and individual i of how heavily to weight i’s cardinal

utility for k and then redistributes k accordingly.  When preferences are complete, a utilitarian

planner makes just one weighting per individual.

Our main purpose is to link status quo bias to incompleteness and then consider the

implications for the number of Pareto and utilitarian optima.  But not all varieties of preference

incompleteness influence the size of the Pareto set; there are some trivial exceptions.  For

instance consider an agent with complete and transitive preferences š on bundles in  suchR L
%

that the resulting strict preferences ™ are strictly convex, and for some bundle a relabel all of

the bundles b indifferent to a as unranked.  That is, for any b such that b - a eliminate both (a,

b) and (b, a) from š.  Perform such excisions for several or even every a 0  therebyR L
%
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defining a new “relabeled” preference relation .  Now consider a society of I such agents,š
INC
i

where for each agent i we specify an original preference relation ši leading to the economy E

and a relabeled preference relation  leading to the economy E INC.  Then the sets of Paretoš
INC
i

optimal allocations for E and E INC must coincide.  Since each  is a subset of the original šiš
INC
i

it must be that if the allocation x = (x1, ..., xI) Pareto dominates y = (y1, ..., yI) in E INC then x

Pareto dominates y in E.  Hence if z is Pareto optimal in E then z must also be Pareto optimal in

E INC.  To see that the reverse implication holds, suppose y is Pareto optimal in E INC but not in

E.  Then some x Pareto dominates y in E but not in E INC.  Since however the  omit onlyš
INC
i

indifferences from the ši there must then be some i with yi -i xi in E.  But since each ™i is

strictly convex, some convex combination of x and y would then Pareto dominate x in E INC.

Since such trivial forms of incompleteness have no implications for the Pareto set, our

first task, in the next section, will be to consider various substantial forms of incompleteness. 

We will see that status quo bias entails several strong forms of incompleteness.  In the

following section, we turn to the dimension of the Pareto set under status quo bias.  Our final

two topics are the dimension of the Pareto set when agents display status quo bias for a subset

of goods and the number of utilitarian optima.

While the dimension of the Pareto set in incomplete-preference economies and the

comparative efficacy of utilitarianism are novel topics, several of our points follow in the

footsteps of Rigotti and Shannon (2005).  They establish indeterminacy of the Pareto set in

economies with uncertainty where incomplete preferences are represented as a set of probability

distributions (Dana (2004) shows indeterminacy of the Pareto set for a specific case of

incomplete preferences).  Our characterization of Pareto optimal allocations as those where

agents’ normal cones have a direction of mutual intersection also parallels the treatment in

Rigotti and Shannon.  Billot et al. (2000) use a similar construction.

Our setting is distinctive in a couple respects.  First incompleteness of preference does

not by itself lead to nontrivial normal cones (as the example of trivial incompleteness above
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indicates).  Instead it is a consequence of status quo bias.  Second we must allow agents’

normal cones to change as their consumption changes, which leads the manifold of

consumption-normal vector pairs to be our primitive description of agents.  The dependence of

normal cones on consumption leads to the principal mathematical wrinkle we are forced to

confront: boundary Pareto optima inevitably arise when agents’ normal cones ‘just’ overlap,

that is, when normal cones share a common direction but their interiors do not.  For more on

the normal cone characterization of Pareto optimality in this more general setting where normal

cones are a function of consumption, see Bonnisseau and Cornet (1988).

At a technical level, a prime purpose of this paper is to marry the best-documented

phenomena of behavioral economics – status quo bias – to the mathematical tools of general

equilibrium theory and with the ‘regularity’ literature in particular.  We will be able to

characterize when agents with status quo bias combine together to create mathematically

tractable Pareto sets and show that this situation is generic.  Since the “better than” sets we

consider are kinked, it is a pleasant surprise that the smooth tools of differential topology

provide handy descriptions of both the well-behaved and troublesome configurations of

incomplete-preference agents.  Smooth analyses of the production sets that arise from activities,

which are also kinked, offer a precedent (see Mas-Colell (1985)) and suggested the present

approach.

For more on the connection between incomplete preferences and status quo bias, see

Mandler (2004a) and Masatlioglu and Ok (2005), and earlier Bewley (1986).  When we

consider utilitarianism in section 5, we will need utility representations of incomplete

preferences; here we follow the sets-of-utility-functions line of research (Ok (2002)) rather than

the interval order tradition (Manzini and Mariotti (2004)).

2.  Status quo bias and incompleteness

An individual is described by a preference relation š defined on  where L is theR L
%
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number of goods.  Let ‹ denote {1, ..., L}.  The asymmetric part of š is denoted ™, the

symmetric part is denoted -, and the complement of ™ is denoted å.  The preferences š are

reflexive if and only if a š a for all a 0 .  We use two different transitivity conditions: š isR L
%

transitive if and only if for all a, b, c 0 , a š b and b š c imply a š c, and š is weaklyR L
%

transitive if and only if for all a, b, c 0 , a š b and b š c imply c å a.  Weak transitivityR L
%

ensures that the agent cannot be money-pumped or otherwise manipulated into endowment

diminishing trades (see Mandler (2005)).  When š is complete, weak transitivity and standard

transitivity are equivalent.  The relation š is: convex if and only if for all a 0  the sets B(a)R L
%

/ {b 0 : b š a} and {b 0 : b ™ a} are convex, strictly convex if and only if, for all a, bR L
%

R L
%

0  and λ 0 (0, 1) a š b implies λa + (1 !λ)b ™ b, locally nonsatiated if and only if, for all aR L
%

0  and ε > 0, there is some b ™ a with 2a !b2 < ε, monotone if and only if, for all a 0 R L
%

R L
%

and b 0 , a š a + b.  We also define, for any a 0 , W(a) / {b 0 : a š b}.  Finally,R L
%%

R L
%

R L
%

ši is locally nonindifferent if a š b implies that for all ε > 0 there exists a c 0  such that c ™R L
%

b and 2c !a2 < 0.

Our primitive is the weak preference relation š.  As explained in the introduction, we

take a š b to mean that an agent endowed with b accepts a in exchange.  Incompleteness of š

therefore occurs if status quo bias or an endowment effect is present, e.g., if a is not selected

when b is the endowment and b is not selected when a is the endowment.  Momentarily we give

more structure to status quo bias, to match the behavioral evidence more closely.

If agents refuse to switch from status quo bundles unless offered strictly preferred

alternatives, we could instead take ™ as primitive.  But if we begin with ™, we must then define

indifference by a -1 b ] B(a) = B(b) and W(a) = W(b) rather than by a -2 b ] not a ™ b and

not b ™ a: some of our assumptions, most prominently convexity, would be highly implausible

with the second definition.  For example, with weak preference given by š2 = ™ c -2, the

convexity of š2 rules out the canonical case where a ™ b ] a $ b: (a) is then never convex. B
š2

But for š1 = ™ c -1, the same ™ leads (a) always to coincide with the convex set {b 0B
š1
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: b ™ a} since there are no (a, b) with a -1 b.  We may in fact reinterpret all of ourR L
%

assumptions on š as assumptions on ™ c -1 with ™ as the true primitive.  See Mandler

(2004b) for more on how translate between š and ™ when š is incomplete.

To avoid the trivial incompleteness discussed in the introduction, consider the following

ways in which preferences can be substantially incomplete.  For A d RL, let ‘cl A’ denote the

closure of A, let μ (A) denote the (Lebesgue) measure of a (Lebesgue) measurable set A, let MA

denote the boundary of A, and let ‘int A’ denote the interior of A.  When referring to the interior

or boundary of A relative to some space X …  and confusion is possible, we write intX A.R L
%

Definition 1 (substantial incompleteness).  The preference relation š displays

(1)  global incompleteness if and only if for each a 0 , B(a) … {a}, W(a) … {a}, R L
%

clB(a) 1 clW(a) d {a},

(2)  local incompleteness if and only if for each a 0  there is an open O e {a} such thatR L
%

clB(a) 1 clW(a) 1 O d {a},

(3)  measure incompleteness if and only if for each a 0  there exists a measurable A d R L
%

R L
%

with μ (A) > 0 that consists of points not ranked with a, that is,

A 1 (B(a) c W(a)) = i,

(4)  local measure incompleteness if and only if for each a 0  and each open O e {a} thereR L
%

exists a measurable A d O with μ (A) > 0 such that

A 1 (B(a) c W(a)) = i,

(5)  proportionate incompleteness if and only if for each a 0  there exists a maximum radiusR L
%

r > 0 and a minimum proportion k > 0 such that, for any ball β with center a and radius in (0, r),

(β 1 )((B(a) c W(a)) contains a measurable set A with  > k.R L
%

μ (A )
μ (β )

The meaning of (1) through (4) is mostly self-explanatory.  Notice that under global

incompleteness, clB(a) ({a} and clW(a) ({a} must be closed relative to ({a}, disjoint,R L
%
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and nonempty, and hence their union cannot equal ({a}.  So an open (thus positiveR L
%

measure) set of unranked points remains.  With a supplementary condition (see Proposition 1),

the same reasoning applies when local incompleteness holds.  Condition (5) requires that in all

sufficiently small open balls with center a the proportion of points that are unranked relative to

a does not fall below some strictly positive lower bound.

Observe that if š is transitive then local or global incompleteness implies that the set of

bundles indifferent to a, B(a) 1 W(a), forms a discrete set (since for each b - a there would be

an open set containing b but no other points indifferent to a or b).  So on a compact subset of

 there can be only finitely many bundles indifferent to any a.  Surprisingly, some forms ofR L
%

incompleteness lead the unranked bundles to crowd out the indifferent bundles.

Call š nonisolated if and only if for all a 0  and all ε > 0 there exist b 0 B(a)({a}R L
%

and c 0 W(a)({a} such that 2a !b2 < ε and 2a !c2 < ε.

Proposition 1.  (1) Y (2) and (5) Y (4) Y (3).  If š is nonisolated, then (2) Y (4).

All proofs are in the appendix.  To conclude that no other implications among (1) - (5)

are possible (without further restrictions on š), the following examples suffice.  To see that (2)

and not (1) are compatible, see Figure 1, which shades the points that are not ranked relative to

a and where b is indifferent to a.  To see that (5) (and hence (3) and (4)) can hold

simultaneously with not (2) and hence not (1), let the set of points not ranked relative to a be a

generalized Cantor subset of the shaded area in Figure 1 with positive measure on any

neighborhood of a, and let every other shaded point including MB(a) be in W(a).  Then clB(a)

1 clW(a) = MB(a), which as pictured violates (2).  To see that (3) and not (4) are compatible,

see Figure 2.  To see that (4), (1) (and hence (2) and (3)) can hold simultaneously with not (5),

see Figure 3, where both MB(a) and MW(a) are differentiable surfaces.

The violation of proportionate incompleteness in Figure 3 also illustrates a more subtle
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example (compared to the case considered in the introduction) of how preference

incompleteness need not affect the dimension of the set of Pareto optima.  In Figure 3, as a

sequence of open balls with center a shrinks to a itself, the proportion of points unranked to a

by š goes to zero; in this limiting sense preferences are locally complete.  Since the dimension

of the Pareto set turns only on the local properties of preferences, a society of agents with

Figure 3 preferences would not experience the dimensional expansion of the Pareto set that

incompleteness can lead to.

Status quo bias, however, ensures that proportionate incompleteness obtains.  Indeed

status quo bias entails all of the above forms of incompleteness except global incompleteness. 

To formalize status quo bias, let S denote the L !1 dimensional unit circle, {p 0 R L :  'k0‹ p 2
k

= 1}, and define the normal cone of š at a 0  as N(a) /{p 0 S: p @ (b !a) $ 0 for all b 0R L
%

B(a)}.  Each N(a) is closed and the unnormalized cone {p 0 : p @ (b !a) $ 0 for all b 0R L
%

B(a)} is convex as well as closed.  (Terminology warning: N(a) is the negative of what is

sometimes called the normal cone.)

Definition 2.  The preferences š display status quo bias if and only if, for all a 0 , intS N(a)R L
%

has dimension L !1.

Status quo bias asserts that every point a has a full-dimensional set of hyperplanes that

support B(a).  Put differently, on any two-dimensional coordinate plane through a, the set B(a)

displays a kink at a (see Figure 4), which is how status quo bias is often modeled in

applications.  For example, if agents display a WTA-WTP disparity, the minimum amount of

money they will accept in exchange for the sacrifice of one unit of some good will be a

substantial multiple of the amount of money they will pay for an additional unit of a good.  So

in the two-dimensional space of money and the good in question, better-than sets B(a) display a

kink at any given reference point or endowment a.  The equivalent statement put in terms of the



10

normal cone is that B(a) is supported by a set of prices of maximum dimension (i.e., the set of

prices has dimension 2, but after normalizing prices to have length one the dimension reduces

to 1).  Status quo bias as we defined it requires that the same kink or equivalently the same

multiplicity of supporting prices is present along any two-dimensional slice of the commodity

space.

Outside of the mathematical convenience of stating that B(a) is kinked via the normal

cone, our treatment of status quo bias is distinctive in that we meld together the B(a) that an

agent reveals at different points a.  As in other accounts of status quo bias, we interpret B(a) as

the set of bundles an agent will willingly switch to when a is the agent’s endowment.  Most

accounts of status quo bias then go on to label the bundles not in B(a) as dispreferred to a,

which then necessitates a separate preferences relation for each endowment point.  To preserve

the identification of an agent with a single preference relation, we do force this interpretation on

the bundles not in B(a).  Instead we suppose that a bundle b is identified as dispreferred to a

only when the agent in endowed with b and gives it up in favor of a.  This view of how B(a)

and W(a) are identified is only a matter of interpretation of course; mathematically we simply a

posit a single š with B(a) sets that have normal cones of maximum dimension.

Status quo bias does not imply global incompleteness, as Figure 1 illustrates, but we

will now see that along with standard economic hypotheses and a technical assumption it

implies the other four types of incompleteness in Definition 1.  Notice that at one a, a

multiplicity of supporting hyperplanes just indicates a kink in B(a) and carries no implication

of incompleteness.  It is the multiplicity of hyperplanes at every a that carries the implication of

incompleteness.  To see this, let š be convex, transitive, locally nonsatiated, and satisfy status

quo bias and the continuity conditions that B(a) and W(a) are closed for every a.  If š were

complete, then the boundary of B(a) (which must coincide with the boundary of W(a)) would

be a convex indifference surface.  The intersection of this surface and a (nontangent)

hyperplane would define a ‘curve’ of indifferent points that, because of convexity, is
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differentiable almost everywhere; hence B(a) could not be kinked at every a, which is

inconsistent with status quo bias.  Thus with standard background hypotheses status quo bias

preferences cannot be complete.  But the incompleteness implied by (2) through (5) of

Definition 1 is much more extensive that the mere presence of some unranked bundles.  To

establish that status quo bias implies these broader forms of incompleteness we need an

additional technical condition – that the set N(a) changes continuously as a function of a.  To

see why, consider for example the link between status quo bias and local incompleteness. 

Suppose status quo bias and transitivity hold and for concreteness that L = 2.  If the set N(a)

were permitted to vary discontinuously as a function of a, there could be a sequence of points

an ÷ a, with each a n - a, such that N(an), although always one-dimensional, converges to a

single direction.  If each an lies on the same side of a, then N(a) itself can nevertheless consist

of a one-dimensional set (see Figure 5).  Thus there could be indifferent bundles arbitrarily near

a, which as we have seen is incompatible with local incompleteness if š is transitive.  To

exclude such pathological cases, we use assumptions from the following family of continuity

conditions.

Definition 3.  The preferences š have continuous normals (resp. smooth normals) if and only if

M / {(a, n) 0 × S: n 0 N(a)} is a C 0 (resp. C 1) manifold with boundary.  The preferencesR L
%

š have continuous (resp. smooth) normals at xi if and only if, for some open O d R L
%

containing xi, M 1 (O × S ) is a C 0 (resp. C 1) manifold with boundary.

Proposition 2.  If š is convex, transitive, locally nonsatiated, has continuous normals, and

satisfies status quo bias, then proportionate and local incompleteness obtain.

Since transitivity is included among the assumptions of Proposition 2, the set of bundles

indifferent to any a is a discrete set under the same conditions.

Proposition 2 shows only that the proportion of points that are unranked does not go to
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zero in a neighborhood of a.  But not surprisingly, this is the pertinent fact for the dimension of

the Pareto optimal allocations.

3.  Pareto optimal allocations

We now suppose there is a finite set of agents ø = {1, ..., I}, each i 0 ø described by a

preference relation ši.  When a notation from the previous section carries an i subscript, it

refers to the same set but now defined with ši rather than š.  

The economy has an endowment of the L goods, e 0 .  An allocation x = (x1, ..., xn)R L
%%

is a point in the L ( I !1)-dimensional set of feasible allocations F = {x 0 :  xi = e}. R LI
%

'i0ø

Henceforth the ‘boundary’ or ‘interior’ of a set of allocations or an ‘open set’ of allocations are

defined relative to F.

Allocation y Pareto dominates x if yi ši xi for all i 0 ø and yi ™i xi for some i 0 ø, and

allocation x is Pareto optimal if there does not exist an allocation y that Pareto dominates x.

The existence of Pareto optima depends on the continuity of the preferences relations

ši, just as with complete preferences.  We define ši to be upper continuous if SWi (a) = {b 0

: a ™i b} is open for all a and lower continuous if SBi (a) = {b 0 : b ™i a} is open for allR L
%

R L
%

a.  A binary relation ™ on X is acyclic if there does not exist a finite set {x1, x2, ..., x n}, each x i

0 X, such that x1 ™ x 2 ™ ... ™ x n ™ x1.

Proposition 3.  If each ši is upper continuous and ™i is acyclic, then, for any allocation w,

{z 0 F : z is Pareto optimal and wi åi zi for all i} is nonempty and compact.  If in addition for

each a and i, Bi (a) is closed, then, for any w, {z 0 F : z is Pareto optimal and z i ši w i for all i}

is nonempty and compact.

The second sentence in Proposition 3 is less appealing than the first since in the absence

of completeness it is difficult to find a compelling reason for Bi (a) to be closed.  The openness



1  To prove the first sentence, let x be a quasiequilibrium, implying there is a p 0 S with
p @ (bi !xi) $ 0 for all i and bi 0 Bi (xi).  Now suppose there is a y 0 F with yi ši xi for all i and
yj ™j xj for some j.  Then p @ (yi !xi) $ 0 all i.  If p @ (yj !xj) = 0 then interiority, lower
continuity, and p … 0 imply there is a yjN near yj such that p @ (yjN!xj) < 0, a contradiction.  So

p @ (yi !xi) > 0, which is inconsistent with  xi =  yi = e.  We omit the proof of the'i0ø 'i0ø 'i0ø
second sentence; the textbook proof requires only a couple adjustments to avoid transitivity. 
Notice in this regard that our definition of convexity requires that each SBi (a) is convex.
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of SWi (a) relies on any discrete change in an agent’s welfare being divisible into smaller

nonzero changes, the same rationale one invokes when preferences are complete.  But to

assume that Bi (a) (or Wi (a)) is closed requires that limits of bundles ranked to a be ranked;

since incompleteness is permitted, it is not clear how to justify such an assumption.

We now state the welfare theorems in our terminology and highlight that preference

completeness is inessential.  An allocation x is a quasiequilibrium if and only if  Ni (xi) …_ i0ø

i and an equilibrium if and only if there is a p 0 S such that, for each i, xiN ™i xi implies pi @ xiN

> pi @ xi.  (For a quasiequilibrium, xiN ™i xi but pi @ xiN = pi @ xi for p 0  Ni (xi) is allowed.) _ i0ø

An allocation x is interior if and only if xi >> 0 for all i.  Quasiequilibria rather than equilibria

provide the more convenient characterization of optimality.

Proposition 4.  If each ši is lower continuous, any interior quasiequilibrium is Pareto optimal. 

If each ši is locally nonsatiated and convex, any Pareto optimum is a quasiequilibrium.1

The assumptions of Proposition 4 differ from what is needed in an equilibrium characterization

of Pareto optimality: to show that an equilibrium is Pareto optimal, local nonsatiation and

transitivity are the natural sufficient conditions.

Thus with convex, lower continuous, and locally nonsatiated preferences, we may

characterize interior allocations as Pareto optimal if and only if they are quasiequilibria.  These

conditions on preferences are traditional (convexity) or technical (lower continuity) or mild

(local nonsatiation) and in any event allow preferences to be incomplete and/or intransitive.  If

x is an equilibrium rather than a quasiequilibrium, then local nonindifference would by itself
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(without lower continuity or interiority) imply that x is Pareto optimal.  As for the second

welfare theorem, convexity and a strengthened version of continuity would by themselves

(without local nonsatiation) imply that any interior Pareto optimum is an equilibrium (see Mas-

Colell (1974), Shafer and Sonnenschein (1975)).  So for the equilibrium version of the welfare

theorems completeness and transitivity are again unnecessary.

To argue that most Pareto optima sit amid open sets of Pareto optima, we first identify

certain optimal allocations as regular and then show that regularity typically obtains.

Definition 4.  A Pareto optimum x is regular if and only if  intS Ni (xi) … i and each ši_ i0ø

has continuous normals at xi.

Given Proposition 4, the following result is immediate.

Proposition 5.  If each ši is lower continuous, then an interior regular Pareto optimum is

contained in an open and hence L ( I !1)-dimensional set of Pareto optima.

In contrast, an economy of I agents with complete, strictly convex, and monotone preferences

has a set of Pareto optima of dimension I !1 (Arrow and Hahn (1971)).

We can visualize the regular and nonregular optima and see which case is more likely

using the concept of transversal intersection.  Suppose that ši displays status quo bias and has

smooth normals.  In conjunction with status quo bias, the smooth normals assumption implies

that the boundary of Ni (xi) is a smooth (L ! 2)-dimensional surface.  Given some ambient

manifold X d R R (e.g., X = S ), two sets A and B in X intersect transversally, which we write A 1y

B, if the affine subspaces that best approximate A and B at any point of common intersection y

together span the affine subspace that best approximates X at y.

Consider the simplest economy consisting of two agents i and j.  If Ni (xi) 1y Nj (xj) and

x is optimal – that is, Ni (xi) 1 Nj (xj) … i – then x is also a regular optimum.  To see this,
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observe an optimal x will fail to be regular if and only if Ni (xi) 1 Nj (xj) = MNi (xi) 1 MNj (xj),

in which case MNi (xi) and MNj (xj) are tangent and hence Ni (xi) 1y Nj (xj) does not obtain (see

Figure 6).  (Notice that a failure of transversality can occur only due to a n 0 MNi (xi) 1

MNj (xj).  If n 0 Ni (xi) 1 Nj (xj) and n 0 intS Nk (xk) for either k = i or k = j  then the affine

subspace that best approximates Nk (xk) at n by itself locally spans all of S at n.)  Now if we

perturb i and j’s normal cones then at any given allocation x a failure of transversal intersection

will be an exceptional event.  But failures of transversal intersection at some x can be

unavoidable.  As x varies along some path in F, Ni (xi) and Nj (xj) may switch from being

disjoint to intersecting transversally, with nontransversal intersection necessarily occurring at

some transition point.  Since the qualitative fact that a path changes from Ni (xi) 1 Nj (xj) = i

to Ni (xi) 1 Nj (xj) … i cannot be perturbed away, nontransversal intersection at some

allocation will be unavoidable.  The robust way for normal cones to intersect is for the

underlying manifolds Mi and Mj (cf. Definition 3) to intersect transversally.  To make this

precise, place each Mk in the same space × S by setting Mk = {(x, n): n 0 Nk (xk)}.  WeR LI
%

will show in the proof of Proposition 6 that the transversality condition Mi 1y Mj typically holds. 

Then, although a nonregular optimum x is certainly possible, there will always be a nearby

optimum xN such that Ni (xiN) 1y Nj (xjN) obtains.  (If Ni (xi) 1y Nj (xj) failed to hold for an open

set of allocations containing x, then the best affine approximations of Mi and Mj at (x, n) would

in their n components span only L !2 of the L !1 dimensions in S, thus contradicting Mi 1y Mj.) 

It follows that nonregular optima appear only on the boundary of the set of regular optima.  In

fact, we will be able to show in addition that the nonregular optima have measure 0.

Analysis of regular optima in economies with three or more agents proceeds along the

same lines.  If x is such that, for any pair (i, j), Ni (xi) and Nj (xj) intersect transversally, for any

triple (i, j, k), Ni (xi) and (Nj (xj) 1 Nk (xk)) intersect transversally, and so on, then  Ni (xi)_ i0ø



2  Although the intersection of transversal normal cones, e.g., Nj (xj) 1 Nk (xk), might
not be a manifold, because each N j (x j) is a manifold with boundary, the intersection of the
boundaries of transversal normal cones will be a manifold, and this suffices for our purposes.
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… i Y  intS Ni (xi) … i: if x is optimal then it is regular.2  The proof of Proposition 6 then_ i0ø

shows by induction that generically every Mi intersects every distinct Mj transversally, every Mi

intersects every Mj 1 Mk transversally, and so on.  These latter transversality conditions on the

Mi will imply that for any nonregular optimum there is a nearby allocation x such the stated

transversality conditions on the Ni (xi) obtain.

We show that the nonregular optima are 0-measure boundary phenomena in Proposition

6 below.  The proof proceeds by showing that the above transversality conditions on the Mi

hold generically but then in some steps argues directly for results about the nonregular optima

(rather than via the transversal intersection of the Ni).  Still the above account indicates the

underlying geometry.

To formalize the meaning of certain models being typical or generic, we next specify a

parameter space of economies.

Definition 5.  A smooth status-quo-bias economy is an endowment e 0  and a preferenceR L
%%

profile (š1, ..., šI) such that each ši is locally nonsatiated, lower continuous, convex, has

smooth normals, and satisfies status quo bias.

A sequence of preference relations  that meet the conditions in Definition 5š
n
i

converges to ši if there is a sequence of C 1 maps f n:  ÷ × S  such that f n( ) = Mi R L
%

Mi M n
i

(the manifold for ) and f n converges C 1 uniformly on compacta to the inclusion map of Mi. š
n
i

Using this definition of convergence, we may speak of open and of dense sets of the preference

relations in Definition 5 and, using the product topology, of smooth status-quo-bias economies. 

The convergence of  requires only that the normals cones at every bundle converge, not thatš
n
i

the preference relations (say in the sense of Hausdorff distance) themselves converge.  We
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could require this sense of convergence as well, but it is not necessary for our purposes.

Proposition 6.  For an open and dense set of smooth status-quo-bias economies, the regular

Pareto optima form a nonempty open set POR and thus have positive measure.  The remaining

Pareto optima are contained in the boundary of POR and have measure zero.

Since Proposition 6 states results that hold only generically, it might in principle be the

case that other desirable properties preferences not entailed by Definition 5 will not hold at all

or some of the economies in the identified open and dense set.  Reflexivity and weak

transitivity in particular are attractive: reflexivity is highly intuitive and weak transitivity is a

fundamental rationality property that protects agents from manipulation.  To address this point,

we show in the proof how to ensure that these properties are satisfied for every economy in the

generic set of economies we construct.

It is noteworthy that the tools of differential topology prove so useful in modeling

economies of incomplete-preference agents.  Although the Bi (a) sets are inherently kinked,

smooth techniques can nevertheless be applied to the normal cones that support the Bi (a).  See

Mas-Colell (1985) for precedents in the theory of production.

4.  Partial status quo bias

So far we have considered agents that display status quo bias for all L goods.  We now

show what it means for status quo bias to hold for a subset of goods and calculate the

dimension of the Pareto optimal set that results.  Let p
!k denote (p1, ..., pk!1, pk +1,..., pL), and,

for p 0 S with pk … 1, and let Sk (p) denote {q 0 S:  q
!k = p

!k}.1
2q

&k2

1
2p

&k2

Definition 6.  Agent i displays status quo bias for good k at x if and only if Ni (xi) is a manifold

and whenever p is in the interior of the manifold N i (xi) then (Ni (xi) 1 Sk (p)) … i.  AintSk (p )

Pareto optimum x is regular if and only if there exists a p 0 S such that, for any agent i and
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good k, if i displays status quo bias for k at xi then p 0 (Ni (xi) 1 Sk (p)).intSk (p )

Given an allocation z, let SQi (z) equal the number of goods for which i displays status

quo bias at z, and let i’s conditional preferences ši (z) on the L !SQi (z) dimensional subspace

of  consisting of the goods for which i does not display status quo bias be given by xi ši (z)R L
%

yi if and only if (1) xi ši yi and (2) for any good k, if i displays status quo bias for k then xi (k) =

yi (k) = zi (k).

Definition 7.  An allocation x has well-behaved conditional preferences if and only if, for each

i, ši (x) is strictly convex, monotone, upper and lower continuous, complete and transitive.

Definition 8.  An allocation x satisfies no isolated communities if and only if for every binary

partition {ø 1, ø 2} of the set of agents ø there exists a good k such that some i 0 ø 1 and some j 0

ø 2 each does not display status quo bias for k at x.

‘No isolated communities’ (adapted from Smale (1974)) ensures that utility can be continuously

transferred among agents using only goods for which agents do not display status quo bias.  No

isolated communities also implies that every agent has at least two goods for which the agent

does not display status quo bias (since status quo bias cannot hold for all but one good).  If at

some allocation x we fix the consumption levels of goods for which agents display status quo

bias, then ‘no isolated communities’ in conjunction with well-behaved conditional preferences

implies that the set of allocations near x that are Pareto optimal subject to these constraints has

dimension I ! l (see Arrow and Hahn (1971), or Mas-Colell (1985) for a detailed treatment).

Proposition 7.  If each i’s preferences are convex and lower continuous, and if the interior

regular optimum x has well-behaved conditional preferences and satisfies ‘no isolated

communities,’ then x is contained in a set of optima of dimension I !1 +  SQ i (x).' i0ø



3  Modeling utilitarianism via cardinal sets of utilities or utility transformations is
traditional; see Sen (1970), d’Aspremont and Gevers (1977), Roberts (1980), Bossert and
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5.  Utilitarianism with incomplete preferences

Preference incompleteness or status quo bias can lead so many allocations to be Pareto

optimal that the Pareto criterion loses much of its usefulness.  But the Pareto criterion is only

one way to make welfare judgments.  We therefore ask: does preference incompleteness always

make welfare decisions problematic or is the Pareto criterion particularly likely to label large

sets of allocations as optimal?  We argue for the latter conclusion by examining briefly the

capacity of utilitarianism – the second-most popular economic welfare criterion – to

discriminate among allocations.  When classical utilitarianism faces agents with complete and

strictly convex preferences, it designates one allocation as a global optimum.  When

preferences are incomplete, a utilitarian planner cannot always give advice that is this

sweeping, but even the worst case compares favorably with Pareto optimality.  The issues are

mathematically simple and so we can be concise.

Call a set of functions Z, where each z 0 Z maps some common set Y to R, a cardinal

set if: z 0 Z ] for all zN 0 Z, there exist a > 0 and b such that z = azN + b.  Given a Cartesian

product of n cardinal sets U = U1 × ... × Un, call  d U a cardinal selection from U if:Û

(u1, ..., un ) 0  ] for all (u1N ..., unN) 0 , there exist a > 0 and (b1, ..., bn) such that ui =Û Û

auiN + bi for i = 1, ..., n.

With this terminology, we can describe classical utilitarianism as beginning with a

cardinal set of utilities Ui for each agent i, where any ui 0 Ui is a utility function on the

consumption set .  A utilitarian planner specifies a cardinal selection from U1 × ... × UI thatR L
%

we label W.  The requirement that all profiles in W are rescaled by the same ‘units’ term a

means that the utilitarian planner knows how to translate between the utility units of any pair of

agents.  Cardinality thus arises at two levels: in individual utility sets and in the planner’s

selection of comparable utilities.3  The planner judges an allocation x to be weakly superior to y
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if, for any (and therefore all) (u1, ..., uI ) 0 W, ui (xi) $ ui (yi).  An optimum x in a' i0ø ' i0ø

feasible set F satisfies ui (xi) $ ui (yi) for all y 0 F.' i0ø ' i0ø

To apply this method to potentially incomplete preferences, suppose that each agent is

able to make a full cardinal set of utility judgments for each good taken separately.  As with

complete preferences, the planner takes these sets as data, but now there are L sets per agent,

one set for each good.  Incompleteness occurs when agents do not know how to compare the

utilities of goods and hence cannot always rank bundles that trade-off the consumption of

different goods.  When agents are unable to judge these trade-offs, it would be inappropriate to

endow the planner with that ability.  But since agents possess cardinal judgments about the

strength of preference for any single good k, a utilitarian planner presumably would be able to

compare the utilities of different agents for k, that is, make a cardinal selection from agents’

sets of utilities for k.  Indeed it is presumably easier to interpersonally compare utilities for a

single good than for bundles.  And good-by-good interpersonal comparisons are enough for

utilitarianism to be reasonably discriminating.

Formally, agent i is endowed with L cardinal sets of functions Vi ƒ1„, ..., Vi ƒL„.  Each

function vi ƒk„:  ÷ R in Vi ƒk„ indicates the utility of good k but is a function of theR L
%

consumption level of the other L !1 goods as well since they might be complements or

substitutes for k.  A prominent special case, which we call separability, occurs if each vi ƒk„ 0

Vi ƒk„ varies only as a function of xi ƒk„: that is, for any k 0 ‹ and xi ƒk„ 0 R+, vi ƒk„ 0 Vi ƒk„ is

constant on {yi 0 : yi ƒk„ = xi ƒk„}.  Separability is somewhat more plausible whenR L
%

preferences are incomplete than additive separability is in ordinary utility theory.  Each i

aggregates these sets of utilities by a Vi d Vi ƒ1„ × ... × Vi ƒL„, whose typical element is a L-

tuple of functions vi = (vi ƒ1„, ..., vi ƒL„).  Given any vi 0 Vi, we define a utility function on R L
%

by summing commodity coordinates: vi ƒk„.  We suppose that agent i sees each such'k0‹
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vi ƒk„ as an equally legitimate way to evaluate bundles and hence prefers xi to yi only'k0‹

when all such evaluations rank xi higher than yi.  So henceforth i’s preferences ši on  willR L
%

be given by: xi ši yi if and only if vi ƒk„(xi) $ vi ƒk„(yi) for all vi 0 Vi.  Note that'k0‹ 'k0‹

ši must be transitive.  If Vi is a cardinal selection from Vi ƒ1„ × ... × Vi ƒL„, then { vi ƒk„:'k0‹

vi 0 Vi} forms a cardinal set of functions and so we would return to the complete ordinal

preferences and full cardinality data used by a utilitarian planner.  But when Vi consists of a

larger set of functions (in the extreme, all of Vi ƒ1„ × ... × Vi ƒL„), i would not be able to

cardinally compare his/her strength of preference across goods and ši would be incomplete. 

Although we will not use this assumption, it is natural to suppose that any Vi equals a union of

cardinal selections from Vi ƒ1„ × ... × Vi ƒL„ – any smaller Vi would throw away vi without

changing ši.  Although it is in principle restrictive that ši is derived by summing the vi ƒk„,

considerable flexibility remains.  We may admit any ši that has a utility representation ui: set

Vi ƒk„ = {aui + b: a 0 R++, b 0 R} for each good k and let Vi be any cardinal selection from

Vi ƒ1„ × ... × Vi ƒL„.  At the other end of spectrum, we can admit the extreme incomplete

preference relation ši that ranks yi ši zi if and only if yi $ zi: set Vi ƒk„ = {agi ƒk„ + b: a 0

R++, b 0 R}, where gi ƒk„: R+ ÷ R is increasing, and Vi = Vi ƒ1„ × ... × Vi ƒL„.

The convex status-quo-bias preferences considered in sections 2-4 readily appear under

this set-up: let each Vi ƒk„ contain only concave functions, fix a nontrivial interval of weights

Ai ƒk„ d R++ for each k and a reference ( ƒ1„, ..., ƒL„) 0 Vi ƒ1„ × ... × Vi ƒL„, and let (vi ƒ1„,v̄i v̄i

..., vi ƒL„) 0 Vi if and only if, for all k, vi ƒk„ = α ƒk„ + β for some α 0 Ai ƒk„ and β 0 R.v̄i

A utilitarian planner takes as data for each agent i the sets Vi ƒ1„, ..., Vi ƒL„, and Vi, and

then aggregates agent utilities for each good k, just as a classical planner would aggregate agent

utilities for bundles of L goods.  With access to a full set of cardinal utilities for each agent for

each good k, a utilitarian planner should able to specify for each k a cardinal selection from

V1ƒk„ × ... × VI ƒk„.  We denote this selection by Wƒk„, which has as its typical element an I-

tuple of agent utilities for good k, vƒk„ / (v1ƒk„, ..., vI ƒk„).  The planner then builds one



4  That is, for x and y with xi ƒR„ = yi ƒR„ for i 0 ø and R … k, we could have for some h …
k both vi ƒk„(xi) > vi ƒk„(yi) and vi ƒh„(yi) > vi ƒh„(xi) where vƒk„ 0' i0ø ' i0ø ' i0ø ' i0ø
Wƒk„ and vƒR„ 0 WƒR„.
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utilitarian ranking for each good k: the kth good ranking judges allocation x to be weakly

superior to y if, for any (and hence all) vƒk„ 0 Wƒk„, vi ƒk„(xi) $ vi ƒk„(yi).' i0ø ' i0ø

The basic cardinal utility building blocks that we have posited are comparable to what a

classical utilitarian begins with, except that in the present setting cardinal utilities are defined

separately for each good.  The planner can therefore make independent good-by-good decisions

about how to compare the welfare of different individuals (though, not surprisingly, we will see

that this latitude disappears when preferences are complete).  Once these utility comparisons

have been made, traditional utilitarian results follow: vi ƒk„ will be maximized by' i0ø

transferring goods from low-marginal-utility agents to high-marginal-utility agents.  We stick to

the utilitarian practice of adding utilities to underscore this common ground: the

redistributionist logic of utilitarianism applies unaltered to incomplete preferences.  Note

though that Proposition 8 below would continue to hold if instead we concavely aggregated the

I agent utility functions for k.

The utilitarian ranking for good k compares the utility that the I agents ascribe to good

k.  Due to the possibility of nonseparability, the v i ƒk„ 0 Vi ƒk„ may be functions of the

remaining goods and hence the allocation of these goods can affect the planner’s ranking for k. 

Conversely the allocation of k can affect the rankings for the other goods.  So for example an

allocation x that differs from y only in the good k coordinates might be judged superior to y

according the kth good ranking but inferior according to one of the other good rankings.4  In the

separable case this particular ambiguity cannot arise.  But even with separability there will

obviously be pairs of allocations differing in multiple coordinates that can be ranked differently

by separate commodity rankings.

One way to proceed would be to aggregate the vi ƒk„ across goods, perhaps via a' i0ø
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weighted sum δk [ vi ƒk„], to arrive at a single welfare function that will order any'k0‹ ' i0ø

pair of allocations.  But we wish to avoid having planners impose judgments on the trade-offs

that the agents themselves are unable to make.  Instead we require agreement among the kth

good utilitarian rankings before a change in allocations qualifies as an improvement, or, put in

terms of optimality, that an allocation x is optimal if any change that is an increase for one of

the kth good utilitarian rankings is a decrease for one of the other commodity rankings.  Recall

that an allocation is by definition in the economy’s feasible set F = {y 0 :  yi = e}.R LI
%

'i0ø

Definition 9.  Allocation x is a utilitarian optimum if and only if, for every allocation y such

that vi ƒk„(yi) > vi ƒk„(xi) for some k 0 ‹ and vƒk„ 0 Wƒk„, there is a R 0 ‹ and vƒR„' i0ø ' i0ø

0 WƒR„ such that vi ƒR„(yi) < vi ƒR„(xi).' i0ø ' i0ø

To address the number of utilitarian optima, we assume that each Vi ƒk„ contains only

functions that are strictly concave on the coordinate subspace on which they are nonconstant. 

Formally, strict coordinate concavity obtains if, for each i 0 ø and k 0 ‹, there is a nonempty

set of coordinates K d ‹ such that, for all xi 0 , vi ƒk„ 0 Vi ƒk„ is strictly concave on {yi 0R L
%

: yi ƒR„ = xi ƒR„ for R ó K} and constant on {yi 0 : yi ƒR„ = xi ƒR„ for R 0 K}.  If separabilityR L
%

R L
%

and strict coordinate concavity hold then for any k there is a ƒk„ = ( ƒk„, ..., ƒk„) such thatx̄ x̄1 x̄I

any maximizer of vi ƒk„, where vƒk„ 0 Wƒk„, has ƒk„ as its good k coordinates.  Hence' i0ø x̄

( ƒ1„, ..., ƒL„) is the unique utilitarian optimum.  At the other extreme, suppose in addition tox̄ x̄

strict coordinate concavity that vi ƒk„ 0 Vi ƒk„ is monotone (i.e., vi ƒk„ represents a monotone

preference relation on ) for each i 0 ø and k 0 ‹.  Since x is a utilitarian optimum if andR L
%

only if x is Pareto optimal for an economy with endowment e and the L utilities vi ƒk„, k 0' i0ø

‹, where vƒk„ 0 Wƒk„, the utilitarian optima are a L !1 dimensional set.  Thus we have:

Proposition 8.  If strict coordinate concavity obtains then separability implies there is a unique

utilitarian optimum, and monotonicity for vi ƒk„ 0 Vi ƒk„ for i 0 ø and k 0 ‹ implies the



24

utilitarian optima form a set of dimension L !1.

As long as strict coordinate concavity holds, L !1 is the worst case, that is, the maximum

dimension of the utilitarian optima.  If we were to relax monotonicity so that utilities were

increasing only on a subset of goods, then ‘isolated communities’ could arise in which the

utilities vi ƒk„, k 0 ‹, could be partitioned into families that are monotone on disjoint sets' i0ø

of goods (see Smale (1974) and section 4).  The dimension of the utilitarian optima would then

drop below L !1.  Indeed separability is an example of ‘isolated communities’: each vi ƒk„' i0ø

varies only as a function of the goods x1ƒk„, ..., xI ƒk„ that do not affect the remaining

vi ƒR„, R … k.  But even in the worst L !1 dimensional case, the set of utilitarian optima has' i0ø

not undergone the L(I !1) explosion of dimensionality we saw for Pareto optimality

(Proposition 5).  If, as one presumes when markets are competitive, the number of individuals

is larger than the number of goods, I > L, then the dimension of utilitarian optima is smaller

than the dimension of Pareto optima when preferences are complete.

To conclude we deal with the possibility that a utilitarian optimum need not be Pareto

optimal.  If we eliminate this problem by fiat – by simply requiring that a planner choose Wƒk„,

k 0 ‹, and a utilitarian optimum x so that x is Pareto optimal – then we restrict the admissible

allocations and hence do not expand any multiplicity of optima.  But it will fill out our picture

to see how a planner should choose cardinal selections Wƒk„ to avoid Pareto suboptimality.

Definition 10.  The cardinal selections (Wƒk„)k0‹ are Pareto compatible if and only if there

exist (v1ƒk„, ..., vI ƒk„) 0 Wƒk„, k 0 ‹, such that (vi ƒ1„, ..., vi ƒL„) 0 Vi, i 0 ø.

As preferences become more incomplete, Pareto compatibility becomes a less

demanding restriction.  If Vi = Vi ƒ1„ × ... × Vi ƒL„ for each i then any (Wƒk„)k0‹ is Pareto

compatible.  At the other extreme, suppose that each Vi is a cardinal selection from Vi ƒ1„ × ... ×

Vi ƒL„ and hence that each ši is complete.  Then, given one Wƒk„, and if each Vi ƒk„ contains



5  Given arbitrary (v1ƒk„, ..., vI ƒk„) 0 Wƒk„, there exists (v1ƒR„, ..., vI ƒR„) 0 WƒR„, R … k,
such that such that (vi ƒ1„, ..., vi ƒL„) 0 Vi, i 0 ø: take the ( ƒR„, ..., ƒR„) 0 WƒR„, R 0 ‹, givenv̂1 v̂I
by Pareto compatibility, and set (v1ƒR„, ..., vI ƒR„) 0 WƒR„, R … k equal to a ( ƒR„, ..., ƒR„) 0v̂1 v̂I
WƒR„, R … k, where a solves a ( ƒk„, ..., ƒk„) + (b1, ..., bI ) = (v1ƒk„, ..., vI ƒk„).  Fixing somev̂1 v̂I
( ƒ1„, ..., ƒL„) 0 Vi for each i, Vi being a cardinal selection implies that for any ( ƒ1„, ...,v̄i v̄i ṽi
ƒL„) 0 Vi there exist ai > 0 and (bi1, ..., biL) such that ƒR„ = ai ƒR„ + biR for R 0 ‹.  If Vi ƒk„ṽi ṽi v̄i

does not contain constant functions, a unique (ai, bik) solves ƒk„ = ai ƒk„ + bik.  Thus forṽi v̄i
( ƒ1„, ..., ƒL„) = (vi ƒ1„, ..., vi ƒL„), we conclude, for any R 0 ‹, that vi ƒR„ = ƒR„ + biR forṽi ṽi āi v̄i
some biR, where  solves vi ƒk„ = ƒk„ + bik.  Thus ( ƒR„ + biR  0 WƒR„ and henceāi āi v̄i āi v̄i ) I

i'1
WƒR„ = {(α ƒR„ + biR : α 0 R+, (biR  0 R I}.āi v̄i ) I

i'1 ) I
i'1
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nonconstant functions, only one selection of the remaining WƒR„, R … k, will be consistent with

Pareto compatibility.5  As expected, with complete preferences, the planner’s latitude to make

interpersonal comparisons that vary independently by good disappears.  We say that Vi ƒk„ has

regular minima if any vi ƒk„ 0 Vi ƒk„ has at most one local minimum which if it exists is a

global minimum.

Proposition 9.  If separability obtains, each ši is lower continuous, each Vi ƒk„ has regular

minima, and (Wƒk„)k0‹ is Pareto compatible, then any utilitarian optimum is Pareto optimal.

Following the proof in the appendix, we show that if Vi = Vi ƒ1„ × ... × Vi ƒL„ and vi ƒk„ 0 Vi ƒk„

is concave for each i and k, then again any utilitarian optimum is Pareto optimal.

6.  Conclusion

If incompleteness of preference takes the form of status quo bias, the set of Pareto

optimal allocations can be very large.  In the polar case where a willingness-to-

accept/willingness-to-display disparity occurs in every direction of movement, the dimension of

the Pareto optima will equal the entire dimension of the commodity space.  Utilitarianism in

contrast knocks the dimension of indeterminacy down to L !1 at worst and at best identifies a

unique optimum.

The distinctive feature of utilitarianism under incomplete preferences is that it proceeds

good by good: when aggregating utilities, the planner can independently place weights on the
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utility generated by the different goods consumed by a single individual.  In complete-

preference welfare economics in contrast only one weighting is made for every individual.  This

single weighting can lead to sweeping conclusions; in market settings, policymakers do not

need to and should not make good-by-good distribution decisions, they just need to decide

whom to redistribute wealth to.  But with incomplete preferences, room opens up for

policymakers to judge separately for each good k how much an agent’s consumption of k will

contribute to the social good.

Appendix.

Proof of Proposition 1.  The implications in the first sentence follow immediately from the

definitions.  Assume nonisolation and (2), and let D = O ({a} where O is the open subset

given in (2).  Since clB(a) 1 D and clW(a) 1 D are closed in D, disjoint, and (by nonisolation)

nonempty, their union cannot equal D.  Hence the complement of (clB(a) 1 D) c (clW(a) 1

D) in D must be nonempty.  Since this set is also open, it has positive measure.  �

Proof of Proposition 2.  Local incompleteness.  To show that there is an open O containing a

such that MB(a) 1 MW(a) 1 O d {a}, suppose to the contrary that there is a sequence { b t 0

} such that b t ÷ a, b t … a, and b t 0 MB(a) 1 MW(a).  In the next paragraph, we use the factR L
%

(implied by convexity, transitivity, and local nonsatiation) that b t 0 MB(a) to find a

subsequence of {b t} that lies near to the graph of a convex function f restricted to a line in its

domain.  Since the convexity of f implies that its one-sided directional directives converge, the

subsequence of {b t} approximates a line near a.  Then we take points near b t in W(a) and see

that the directions in the normal cones of these points must be arbitrarily near the orthogonal

complement of the line defined by {b t}, and this is inconsistent with š simultaneously

satisfying status quo bias and having continuous normals.

Status quo bias implies there is a  0 intS N(a).  There must then be a nonempty openp̄

ball β d  with center a and radius r such that F(c) = {α 0 R : c + α  0 MB(a)} … i for all cR L
%

p̄
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0 H / β 1 {c 0 : @ c = @ a}.  Define f : H ÷ R by f (c) = min F(c).  Again because R L
%

p̄ p̄ p̄

lies in the interior of N(a), for b t near a there is a unique c t 0 H such that c t + f (c t)  = b t, andp̄

so we identify any b t near a with this c t 0 H.  (Notice that the graph of f is an affine translation

of MB(x).)  For any ε > 0, we may cover {c 0 H: 2c !a2 # r} by a finite number of cones with

apex a and whose base at the boundary of β has diameter # ε.  More precisely, each cone is the

convex hull of {a} and some C d {y 0 H: 2c!a2 = r} such that if c, cN 0 C then c !cN # ε. 

For any ε > 0 therefore we may select a subsequence of {c t} that accumulates in one of these

cones, and letting ε ÷ 0, a further subsequence {d t} and limit direction !a 0 S such thatd̄

(d t !a) converges to ( !a).  Since f is convex and a 0 int domain f, the one-sided1

2d t
& a2

d̄

directional derivative of f at a is a continuous function of its direction and therefore the

difference quotient  converges to the one-sided directional derivative of f at a inf (d t ) & f (a)

2d t
& a2

direction , say f N(a, ) (see, e.g., Rockafeller (1970, §23)).  If we define  = + f N(a, )d̄ d̄ v̄ d̄ d̄ p̄

and let {v t = d t + f (d t ) } denote the subsequence of {b t} that corresponds to {d t}, wep̄

conclude that the direction (v t !a) converges to ( !a).  Thus if {qt 0 S} is1

2v t
& a2

1
2 v̄ & a2

v̄

a sequence of directions with each q t orthogonal to v t !a and  is an accumulation point ofq̄

{q t} then  lies in the orthogonal complement of !a:  0 ( !a)orth / {q 0 S: q @ ( !a)q̄ v̄ q̄ v̄ v̄

= 0}.  It is straightforward to show that any ε > 0 there are T and TN where for t > T and tN > TN

such that (v tN
!a) and  (v t

!v tN) are both within ε of ( !a) (first1

2v tN
& a2

1

2v t
& v t N2

1
2 v̄ & a2

v̄

select T so that for > T ( !a) is within ε of ( !a) and then choose TN sot̂
1

2v t̂
& a2

v t̂ 1
2 v̄ & a2

v̄

that v tN is near a).  Then for any q ó (  !a)orth there is a TN such that, for tN > TN, q ó η(v tN, a)v̄

/ {p 0 S: p @ (aN !v tN ) $ 0 for all aN 0 B(a)}.

Given some v tN 0 MB(a) 1 MW(a), there is a sequence {w n (v tN)} with w n (v tN) 0 W(a)

and w n (v t N) ÷ v t.  By the transitivity of š, B(w n (v tN)) e B(a), and so if q ó η(v tN, a) then q ó

N(w n (v tN)) for n sufficiently large.  So for any q ó (  !a )orth there is a TN and N such that q óv̄

N(w n (v tN)) for tN > TN and n > N.  It follows that for any ε > 0 there exists w n(v tN) such that

q 0 N(w n(v tN)) implies min{2q ! 2:  0 ( !a)orth} < ε.  This violates smoothness howeverq̄ q̄ v̄
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since this minimum converges to 0 as w n(v tN) approaches a and yet intS N(a) has dimension

L !1.

Proportionate incompleteness.  For any  0 H, with H defined as before, let L( ) denote thec̄ c̄

line segment {λ  + (1 !λ)a: λ 0 R+} 1 H.  Let F and f be defined as before except restrictedc̄

to L( ): for c 0 L( ), F(c) = {α 0 R : c + α  0 MB(a)} and f : L( ) ÷ R is given by f (c) =c̄ c̄ p̄ c̄

minF(c).  In addition, define G(c) = {α 0 R : c +α  0 MW(a)} and let g: L( ) ÷ R be givenp̄ c̄

by g(c) = max G(c) when G(c) … i and  g(c) = !2c !a2 when G(c) = i.  Observe that for c 0

L( ) the points in {c + α : α 0 R} that are unranked relative to a (i.e., not in B(a) c W(a)),c̄ p̄

contain a line of length segment equal to at least f (c) !g(c).  Let βO denote some closed ball

with center a and radius  > 0 that is contained in the O given by local incompleteness; thusr̄

f (c) !g(c) > 0 for c 0 (L( ) 1 βO)({a}.  Let us definec̄

h( ) / { : c 0 (L( ) 1 βO)({a}}.c̄ 2 f (c)& g (c)2
2c&a2

c̄

To see that lim inf h( ) > 0, suppose to the contrary that there is {c t } d (L( ) 1 βO)({a}c̄ c̄

with c t ÷ a and  ÷ 0, and consider the corresponding sequence v t = ct +2 f (c t )& g (c t )2

2c t
&a2

f (c t ) .  Then, as previously, there is a sequence of pairs (t, tN) such that, for any ε > 0,p̄

(v tN
!a) and (v t

!v tN) lie within ε of some fixed limit direction1

2v tN
& a2

1

2v t
& v t N2

( !a) for all (t, tN) sufficiently large.  Since  ÷ 0, G(c t) … i for all1
2 v̄ & a2

v̄ 2 f (c t )& g (c t )2

2c t
&a2

t sufficiently large and so there must be a sequence {w n } d W(a) (hence with B(w n ) e B(a))

such that  ÷ 0 for n and t large.  Thus if q ó (  !a)orth then q ó N(w n ) for n2v t!w n2

2v t!a2
v̄

sufficiently large, again leading to a violation of the continuous normals assumption.

Let P( ) = {b 0 : b = c + α  for some c 0 L( ), α 0 R}.  Since lim inf h( ) > 0,c̄ R L
%

p̄ c̄ c̄

there is, for each  0 H ({a}, a radius  > 0 and a proportion k > 0 such that, for any ball c̄ rc̄ βc̄

with center a and radius in (0, ), ( 1 P( ))((B(a) c W(a)) contains a measurable set Arc̄ βc̄ c̄

with  > k, where  denotes Lebesgue measure on P( ).  Since local
μ c̄ (A )

μ c̄ (βc̄ 1 P (c̄ ))
μ c̄ c̄

incompleteness implies that f (c) !g(c) is bounded away from 0 for c 0 (L( ) 1 βO)( ,c̄ βc̄

there is a kN > 0 such that (βO 1 P( ))((B(a) c W(a)) contains a measurable set AN withc̄
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 > kN.  We then integrate across all βO 1 P( ),  0 {a + p 0 H: p 0 S}, to
μ c̄ (AN)

μ c̄ (βO 1 P (c̄ ))
c̄ c̄

conclude the proof.  O

Proof of Proposition 3.  For any j 0 ø and y 0 F, let  denote {x 0 F: y j åj x j}, which isβ
j

y

nonempty since y 0 .  Upper continuity implies that each  is closed.  For any finite set ofβ
j

y β
j

y

allocations, say Y = {y1, ..., y t}, the acyclicity of ™i implies there is some r 0 {1, ..., t} such

that  åj  for all k 0 {1, ..., t}.  Hence y r 0 , k 0 {1, ..., t} and thus y r 0  1 A fory k
j y r

j β
j

y k β
j

y k

any A e Y.  We conclude that for any nonempty A d F, the sets { 1 A}y0A enjoy the finiteβ
j

y

intersection property.  Hence if A d F is compact and nonempty, ( 1 A) … i.  In_ y0A β
j

y

particular, A0 = {y 0 F: wi åi yi for all i 0 ø} is compact and nonempty.  We may therefore for

i = 1, ..., I, inductively define the nonempty compact sets A i =  ( 1 Ai!1).  Each_ y0A i&1 β
i
y

allocation in A I is Pareto optimal.  To prove the second result, let A0 instead denote {y 0 F: yi

ši wi for all i 0 ø} and define the remaining Ai as before.  �

Proof of Proposition 6.  Given Proposition 5, regarding the regular case it remains only to show

that (I) for an open dense set of economies, POR is nonempty.  For the nonregular case, it

remains to show that for an open dense set of economies (II) any nonregular optimum is the

limit of a sequence of regular optima, thus implying PONR d MPOR (where PONR denote the set

of nonregular optima), and (III) the nonregular points have measure 0.

To show that I, II, and III hold for an open and dense set of economies, we (1) define a

finite-dimensional set of parameters δ, which will establish property I, (2) define a product

space of the δ’s and the endogenous variables (x, n) and a map for each agent i such that, for

any δ, is a submersion onto Mi (3) use this map and the transversality theorem to show that

generically the Mi intersect transversally, (4) show that transversal intersection of the Mi

implies property II, (5) add an additional transversality argument to show that for almost every

allocation normal cones intersect transversally, which establishes property III.

We first extend each Mi to a boundaryless manifold.  Redefine Mi to be a subset of R LI

× S rather than R L × S: Mi = {(x, n) 0 × S : n 0 Ni (xi)}.  Now extend each Mi to a C 1R LI
%



6  For any A d Rm, diamA = sup{2x ! y2: x 0 A, y 0 A}.
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manifold with boundary  so that the projection of  onto its x coordinate, say Rex,M ex
i M ex

i

contains F and forms an open subset of the L(I !1) affine subspace in R LI that spans F.  

(1) Given  and δ = (δ1, ... δI) 0 (0, 1) × ... × (0, 1) / Δ, defineM ex
i

Mi (δ) = {(x, n + b) 0 R LI × S: b 0 β(δi, x) and (x, n) 0 Mi}, 

where β(δi, x) is the ball in R L with center 0 and radius r(δi, x) = .6  Also let
δi (2& diam Ni (xi ))

2

Ni (x, δ) denote {n 0 S: (x, n) 0 Mi (δ)} and, given some n 0 S, define Hn = {xi 0 : xi @ n $R L
%

0}.  We set Bi ,δ (xi) = int (Bi (xi) 1 Hn).  (If xi 0 Bi (x i ) and we wish to preserve³ n0Ni (xi ,δ)

reflexivity, we could instead set Bi ,δ (xi) = int (Bi (xi) 1 Hn) c {xi}.)  Since Ni (x)³ n0Ni (xi ,δ)

d Ni (x, δ), Bi ,δ (xi) will generate the normal cone Ni (x, δ), that is, if ši,δ is defined by 

xi ši,δ yi if and only if xi 0 Bi , δ(yi)

then for any allocation x the normal cone of ši,δ at xi will be given by Ni (x, δ).  We have let

the expansion of the Ni shrink to 0 as diamNi (xi) approaches 2 so that diamNi (x, δ) < 2, thus

ensuring that Ni (x, δ) remains the intersection of S and a convex cone, and hence that Bi ,δ (xi)

is nonempty and therefore consistent with local nonsatiation.  That ši,δ has smooth normals

follows from that ši has smooth normals and the fact that r(δi, x) is a C 1 function of x, while

ši,δ  is lower continuous since the “int” specification for Bi ,δ (xi) implies it is an open set (or at

least that Bi ,δ (xi) ({xi} is open).  Finally, because we only eliminate from and add no bundles

to any Bi, and hence only eliminate ordered pairs from ši, ši,δ remains weakly transitive if ši

is.  If δn ÷ δ then each  converges to ši,δ.  Observe that if x is Pareto optimal for theši,δ n

original economy with Mi, i 0 ø, then, for any δ 0 Δ, x is a regular Pareto optimum for Mi (δ), i

0 ø.  Thus the set of economies for which POR is nonempty forms a dense (and, self-evidently,

open) set: property I is satisfied.

(2) Let F ex denote the L (I !1)-manifold formed by the intersection of R ex and the affine

subspace spanned by F.  Since, for any x and δ, MNi (x, δ ) is compact and boundaryless the ε-
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neighborhood theorem (see, e.g., Guillemin and Pollack (1974), 2.3) implies there exists a ε

neighborhood of MNi (x, δ) in, and open relative to, S, and a C 1 submersion from this

neighborhood to MNi (x, δ) that is the identity on MNi (x); this function can be chosen to take

each n to the  0 MNi (x, δ) that minimizes 2n ! 2.  By adjusting the proof of then̂ n̂

neighborhood theorem slightly, one may show that there is a set ×  in, and open relativeˆFS Δ̂

to, (F ex × S) × Δ, and a C 1 map Gi: ×  ÷  such that (i)  e F, (ii)  d  isˆFS Δ̂ ˆFS projF ex
ˆFS Δ̂ R I

%

an open rectangle with 0 0 cl , (iii) if (x, n) 0 MMi (δ) and δ 0 , then (x, n) 0 , (iv) GiΔ̂ Δ̂ ˆFS

maps (x, n, δ) 0  ×  to (x, ), where  0 MNi (x, δ) minimizes 2n ! 2, and (v) for δ 0 ,ˆFS Δ̂ n̂ n̂ n̂ Δ̂

:  ÷  defined by (x, n) = Gi (x, n, δ) is a submersion onto MMi (δ).  (Here andg δ

i
ˆFS ˆFS g δ

i

subsequently MMi and intMi will refer to the boundary and interior of the manifold Mi.) 

Property (iv) is not essential, but it simplifies the calculation of a derivative in (3).

(3) To show, for any C 1 submanifold P of , that Gi 1y P, it is sufficient forˆFS

dim(ImageDGi (x, n, δ)) to equal dim  = L(I !1) + L !1 for any (x, n, δ) 0 × .  SinceˆFS ˆFS Δ̂

for δ 0 ,  is a submersion onto MMi (δ), and MMi (δ) has dimension equal to dim( ) !1,Δ̂ g δ

i
ˆFS

we have dim (Image DGi (x, n, δ)) $ dim( ) !1.  Moreover, dim(ImageDGi (x, n, δ)) =ˆFS

dim( ) if, for any δ 0  and (x, n) 0 MMi (δ), Image(DGi (x, n, δ)) contains some directionˆFS Δ̂

not in Tx ,n MMi (δ).  (Ty A will denote the tangent bundle of a manifold A at y.)  For m 0 T ˆFS

given by (0, nN… 0), where nN @ n = 0 for all n 0 MNi (x, δ), we have m z Tx ,nMMi (δ).  Since

Gi ((x, n), δ) = m, Gi ((x, n), δ)m … 0 and so m may serve as the additionalD
δi

r (δi , x )

2m2
D

δi

direction.

 For the submanifold MMj (δ) of , j … i, the transversality theorem implies that the δˆFS

0  such that  1y MMj (δ) form a set Δij d  whose complement in  has 0 measure.  SinceΔ̂ g δ

i Δ̂ Δ̂

 is a submersion onto MMi (δ), Image  coincides with ImageD ι(Mi (δ)), whereg δ

i Dg δ

i (x, n)

ι(Mi (δ)): MMi (δ) ´  is the inclusion map of MMi (δ) and so MMi (δ) 1y MMj (δ) for δ 0 Δij. ˆFS

Moreover, since F is compact, the set d  such that MMi (δ) 1y MMj (δ) on F in addition toΔ̄ i j Δ̂

(i) having a 0-measure complement and (ii) containing 0 in its closure is also (iii) open.  Call
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any subset of  with these three properties generic.  Apply the same logic to any pair (k, l) ofΔ̂

agents and take the intersection of the resulting , thus arriving at a generic set Δ2.  Since forΔ̄k l

any δ 0 Δ2 and any i, j, l 0 ø, MMj (δ) 1y MMl (δ), MMj (δ) 1 MMl (δ) is a C 1 manifold and hence

there is a generic set  such thatΔ̄ i, j, l

(T ) MMi (δ) 1y (MMj (δ) 1 MMl (δ))

holds for any δ 0 .  Consequently there is also a generic set Δ3 such that T holds for anyΔ̄ i, j, l

triple in ø and δ 0 Δ3.  Proceeding by induction we conclude there is a generic set Δ I such that

for any δ 0 ΔI and any agent i and Ii d ø ({i}, MMi (δ) 1y MMj (δ). _ j0 Ii

(4) For any δ 0 ΔI and (x, n) 0 Mi (δ) (that is, an optimal x supported by n), consider_ i0ø

the d ø defined by i 0  if and only if (x, n) 0 MNi (δ) (that is, the agents for whom n in onÎ Î

the boundary of their normal cones).  Relabel agents so that  = {1, ..., t}.  SinceÎ

Tx ,nMM1(δ) + Tx ,n ( MMj (δ)) = ,_
t
j'2 R dim ˆFS

there must be (x1, n1) 0 (int M1(δ)) 1 MMj (δ) arbitrarily near (x, n).  Similarly since_
t
j'2

Tx ,nMM2(δ) + Tx ,n ( MMj (δ)) = ,_
t
j'3 R dim ˆFS

there must exist (x2, n2 ) 0 (int M2 (δ)) 1 MMj (δ) arbitrarily near (x1, n1) and hence still_
t
j'3

in intMi (δ).  Proceeding by induction we conclude there is a (x t, n t) 0 int Mj (δ) that may_
t
j'1

be chosen to be arbitrarily near (x, n).  Since (x t, n t) 0 int Mj (δ) implies n t 0_
t
j'1

intS Nj (x t, δ), we conclude that for any δ 0 ΔI and any interior optimum x there is a_
t
j'1

sequence of regular optima that converges to x.  For a boundary x in contrast, it may be that any

x t ó F.  To cover the nonregular boundary optima, we can apply (with no alterations) the logic

from (2) onwards to an arbitrary coordinate subspace.  Specifically, for each good k let I (k)

denote an arbitrary strict subset of ø (indicating the agents who do not consume k), let  = {x 0R̄

: i 0 I (k) implies x i (k) = 0}, and let  = F ex 1 .  Letting  take the place of F ex, weR LI
%

F̄ R̄ F̄

conclude, for δ in a generic set, that for any nonregular boundary optimum in  1 F we mayF̄

find a x t 0  1 F arbitrarily near x such that intS Nj (x t, δ) … i.  While x t need not beF̄ _
t
j'1

optimal (since it is a boundary point), any interior point sufficiently near x t must be.  Thus the
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property PONR d MPOR is dense.  Since PONR d MPOR follows from our manifolds having

transversal intersection, the openness of the property PONR d MPOR follows as usual from the

compactness of F.

(5) Next we show that PONR has measure 0 for any δ 0 ΔI.  Fix some δ 0 ΔI.  For any x 0

F and i 0 ø, let  and , with ×  d  and open relative to Fex and S respectively, beF̃x S̃x F̃x S̃x
ˆFS

such that if (y, n) 0 MMi (δ) and y 0  then n 0 .  Since { }x0F covers the compact set F,F̃x S̃x F̃x

we can restrict ourselves to some finite selection from { }x0F that covers F.  Since δ 0 ΔI, weF̃x

know that  1y MMj (δ) for any i and Ii d ø ({i}.  Hence by the transversality theorem theg δ

i _ j0 Ii

function :  ÷  defined by (n) = (x, n) satisfies  1y MM j (δ) for a.e. yh δ, y
i S̃x

ˆFS h δ, y
i g δ

i h δ, y
i _ j0 Ii

0 .  For any of these y and any n such that (y, n) 0 MMi (δ) 1 MM j (δ), Image (n)F̃x _ j0 Ii
Dh δ, y

i

has dimension equal to dimS !1 and consists only of directions (0, ) where  0 Tn MNi (y, δ). n̂ n̂

 For nN 0 Tn S such that (0, nN) z Image (n), it must be (given  1y MM j (δ)) thatDh δ, y
i h δ, y

i _ j0 Ii

(0, nN) 0 T( y , n)( MM j (δ)).  Hence MN i (y, δ) 1y MN j (y, δ).  Given i and , we can_ j0 Ii
_ j0 Ii

F̃x

specify such a set of y in , each with null complement in , for any of the finite number ofF̃x F̃x

Ii d ø ({i}.  Letting the finite selection from { }x0F vary and then letting i vary and taking theF̃x

intersection of the resulting finite number of sets, we conclude that any y outside of a null set of

allocations has MN i (y, δ) 1y MN j (y, δ) for all i and Ii.  Hence any such y that is an_ j0 Ii

optimum is a regular optimum.  As in the previous paragraph, therefore, for any of these y that

are optimal,  intS N i (y, δ) … i.  Openness of the property of PONR having measure 0_ i0ø

follows again from the compactness of F.  �

Proof of Proposition 7.  For z 0 , let z2 denote the projection of z onto the coordinates (i, k)R LI
%

for which agent i displays status quo bias for good k at z, and let z1 denote the projection of z

onto the remaining coordinates.  Since ši (z) = ši (y) whenever z2 = y2, we write ši (z2)

instead of ši (z).  Let  denote the interior regular optimum given in the proposition and let x̄ p̄

= ( , ) have the property, guaranteed by the regularity of , that if i displays status quo biasp̄1 p̄2 x̄

for k at  then  0 (Ni ( ) 1 Sk (p)).  ‘No isolated communities’ and well-behavedx̄i p̄ intSk (p ) x̄i
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conditional preferences imply, for any z2, that PO(z2) = {z1: z1 is Pareto optimal for ši (z2), i

0 ø} has dimension I !1.  Hence, given the continuous normals assumption, it is sufficient to

show, for any  ÷  and any  ÷  with  0 PO( ), that x n = ( , ) is Paretox n
2 x̄2 x n

1 x̄1 x n
1 x n

2 x n
1 x n

2

optimal for all n sufficiently large.  Since  0 PO( ), the continuous normals assumptionx n
1 x n

2

implies that there exists  ÷  such that, for each agent i, @ (y1i ! )  $ 0 for all y1ip n
1 p̄1 p n

1 x n
1i

ši ( ) .  To show that, for large n, x n is Pareto optimal and supported by ( , ), let usx n
2 x n

1i p n
1 p̄2

suppose to the contrary that there is a subsequence x n such that for each n there exists a i and

 with  ši  and ( , ) @ (  ! ) < 0.  Taking a further subsequence if necessary wey n
i y n

i x n
i p n

1 p̄2 y n
i x n

i

suppose that this i remains the same for all n.  Our selection of  implies that  … .p n
1 y n

i2 x n
i2

Let 0 S denote ( ! ) and let (xi ) denote the normalized polar coneẑ n 1

2y n
i & x n

i 2

y n
i x n

i Ni
B

of Ni (xi ): (xi ) /{ z 0 S: z @ p $ 0 for all p 0 Ni (xi )}.  Then w 0 (xi ) if and only if thereNi
B Ni

B

are sequences λt > 0 and  such that  0 Bi (xi) and λt ( ! xi) ÷ w.  In particular each  0y t
i y t

i y t
i ẑ n

( ).  Since, for any xi, the (normalized) polar cone of (xi) is Ni (xi), @ p $ 0 for allNi
B x n

i Ni
B ẑ n

p 0 Ni ( ).  The continuous normals assumption therefore implies that any accumulation pointx n
i

of , say , satisfies @ p $ 0 for all p 0 Ni ( ).  Thus  0 ( ).  On the other hand, sinceẑ n z̄ z̄ x̄i z̄ Ni
B x̄i

by assumption ( , ) @ (  ! ) < 0 for each n, @  # 0.  Since  …  and thereforep n
1 p̄2 y n

i x n
i p̄ z̄ y n

i2 x n
i2

(k) … 0 for some coordinate k, for any ε > 0 we can find pN 0 Sk ( ) with 2pN ! 2 < ε andẑ2 p̄ p̄

pN @  < 0, and since i displays status quo bias for k, pN 0 Ni ( ) when pN is sufficiently near . z̄ x̄i p̄

But then pN @ ( ! ) < 0 for some 0 Bi ( ) , a contradiction.  �y t
i x̄i y t

i x̄i

Proof of Proposition 9.  Suppose x Pareto dominates y: xi ši yi for all i 0 ø and xj ™i yj for

some j 0 ø.  Then for the (vi ƒ1„, ..., vi ƒL„) 0 Vi, i 0 ø, given by Pareto compatibility,

vi ƒk„(xi) $ vi ƒk„(yi) for all i.  If vj ƒk„(xj) = vj ƒk„(yj) then xj is not a'k0‹ 'k0‹ 'k0‹ 'k0‹

global minimum and hence not a local minimum of vj ƒk„, and so there is a sequence zjt ÷ xj

such that vj ƒk„(zjt) < vj ƒk„(xj) = vj ƒk„(yj), violating lower continuity.  Thus'k0‹ 'k0‹ 'k0‹

vj ƒk„(xj) > vj ƒk„(yj) and hence vi ƒk„(xi) > vi ƒk„(yi).  Then'k0‹ 'k0‹ ' i0ø 'k0‹ ' i0ø 'k0‹

y cannot be a utilitarian optimum: if it were, separability implies vi ƒk„(yi) $' i0ø
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vi ƒk„(xi) and hence vi ƒk„(yi) $ vi ƒk„(xi).  �' i0ø 'k0‹ ' i0ø 'k0‹ ' i0ø

Addendum to proof of Proposition 9.  If Vi = Vi ƒ1„ × ... × Vi ƒL„ and vi ƒk„ 0 Vi ƒk„ is concave

for each i and k, then any utilitarian optimum y maximizes δk ƒk„ for some δ = (δ1,'k0‹ ' i0ø v̄i

..., δI ) $ 0 and  0 Vi.  Hence if δ >> 0 then we may apply the above proof using (δi ƒ1„, ...,v̄i v̄i

δi ƒL„) 0 Vi, i 0 ø, to represent i’s preferences and (assuming no local minima) to concludev̄i

that δi ƒk„(xi) > δi ƒk„(yi) if x Pareto dominates y, contradicting the' i0ø 'k0‹ v̄i ' i0ø 'k0‹ v̄i

maximality of y.  Hence, modulo the technical provisos, Vi = Vi ƒ1„ × ... × Vi ƒL„ and concavity

imply that a utilitarian optimum is Pareto optimal.
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